THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS
 MATH3220: Operations Research and Logistics
 L11 Supplementary notes

Date: 2 April 2015

Theorem 1. Prim's algorithm produces a minimal spanning tree.

Proof. Denote by T_{i} the tree constructed after i iterations of the algorithm, $i=1,2, \ldots, n-1$.
Hence the algorithm produces a spanning tree $T=T_{n-1}$ and suppose T is not optimal. Let $T^{*}=\left(N, F^{*}\right)$ be an optimal tree that has as many edges in common with T as possible.

As $T \neq T^{*}$, let $f=(a, b)$ be the first edge chosen by the algorithm (say in its k th iteration, $k \leq n-1$) that is not in T^{*}. (Thus $f \in T_{k} \backslash T^{*}$.) Let P be the path in T^{*} from a to b; and f^{*} be an edge of P between a node in T_{k-1} and a node not in T_{k-1} (Thus $f^{*} \in T^{*} \backslash T_{k}$.) Note that edge f also has one end in T_{k-1} and one end not in T_{k-1} (but in T_{k}). We thus have $w(f) \leq w\left(f^{*}\right)$ because the algorithm has chosen f over f^{*}.

Now $\hat{T} \equiv\left(N, F^{*} \cup\{f\} \backslash\left\{f^{*}\right\}\right)$ obtained from T^{*} by replacing f^{*} with f is then an optimal tree. If $f^{*} \notin F$, then we have $|\hat{F} \backslash F|=\left|F^{*} \backslash F\right|-1$, which contradicts the choice of T^{*}. So, T is optimal. Otherwise, \hat{T} is a MST having maximal number of common edges with T. Furthermore, it contains a longer sequence $e_{1}, e_{2}, \ldots, e_{k}(=f)$ of the initial edges in T. Repeat the procedure, finally, we will have a MST, say T^{\prime}, either having one more common edges with T than T^{*} (leads to a contradiction) or $T^{\prime}=T$ (also leads to a contradiction that T is not an optimal tree). Therefore, T is a MST.

Alternative Proof. Suppose the connected graph G has n vertices. Prim's algorithm adds edges in some order $e_{1}, e_{2}, \ldots, e_{n-1}$ forming tree T.
Consider the finite set of all minimum spanning trees for G. Choose T^{*} which contains the longest sequence $e_{1}, e_{2}, \ldots, e_{k}$ of the initial edges in T.
If $T=T^{*}$, then T is a MST and we are done.
Otherwise, let T_{k} be the tree formed by the edges $e_{1}, e_{2}, \ldots, e_{k}$ with $k<n-1$. Since T^{*} is a spanning tree, adding $e_{k=1}$ to T^{*} will produce a cycle in T^{*}. Since e_{k+1} shares a vertex with an edge in T_{k}, at least one of the vertices in T_{k} is part of the cycle. Since T is a tree it cannot contain a cycle, so there must be some edge \hat{e} in the cycle that is part of T^{*}, but does have a vertex connect to T_{k}. (why?)
Let $T^{\prime}=T^{*} \cup\left\{e_{k+1}\right\} \backslash \hat{e} . T^{\prime}$ is a spanning tree. It also has no larger weight than T^{*}. But T^{\prime} has a longer sequence of edges than does T^{*}. This contradicts the maximality of T^{*}.
Thus, it must always be true that $k=n-1$ and T is one of the minimal spanning trees for G.

