MATH3220/LP/14-15

THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3220: Operations Research and Logistics L11 Supplementary notes

Date: 2 April 2015

Theorem 1. Prim's algorithm produces a minimal spanning tree.

Proof. Denote by T_i the tree constructed after *i* iterations of the algorithm, i = 1, 2, ..., n - 1. Hence the algorithm produces a spanning tree $T = T_{n-1}$ and suppose *T* is not optimal. Let $T^* = (N, F^*)$ be an optimal tree that has as many edges in common with *T* as possible.

As $T \neq T^*$, let f = (a, b) be the first edge chosen by the algorithm (say in its kth iteration, $k \leq n-1$) that is not in T^* . (Thus $f \in T_k \setminus T^*$.) Let P be the path in T^* from a to b; and f^* be an edge of P between a node in T_{k-1} and a node not in T_{k-1} (Thus $f^* \in T^* \setminus T_k$.) Note that edge f also has one end in T_{k-1} and one end not in T_{k-1} (but in T_k). We thus have $w(f) \leq w(f^*)$ because the algorithm has chosen f over f^* .

Now $\hat{T} \equiv (N, F^* \cup \{f\} \setminus \{f^*\})$ obtained from T^* by replacing f^* with f is then an optimal tree. If $f^* \notin F$, then we have $|\hat{F} \setminus F| = |F^* \setminus F| - 1$, which contradicts the choice of T^* . So, T is optimal. Otherwise, \hat{T} is a MST having maximal number of common edges with T. Furthermore, it contains a longer sequence $e_1, e_2, \ldots, e_k (= f)$ of the initial edges in T. Repeat the procedure, finally, we will have a MST, say T', either having one more common edges with T than T^* (leads to a contradiction) or T' = T (also leads to a contradiction that T is not an optimal tree). Therefore, T is a MST.

Alternative Proof. Suppose the connected graph G has n vertices. Prim's algorithm adds edges in some order $e_1, e_2, \ldots, e_{n-1}$ forming tree T.

Consider the finite set of all minimum spanning trees for G. Choose T^* which contains the longest sequence e_1, e_2, \ldots, e_k of the initial edges in T.

If $T = T^*$, then T is a MST and we are done.

Otherwise, let T_k be the tree formed by the edges e_1, e_2, \ldots, e_k with k < n - 1. Since T^* is a spanning tree, adding $e_{k=1}$ to T^* will produce a cycle in T^* . Since e_{k+1} shares a vertex with an edge in T_k , at least one of the vertices in T_k is part of the cycle. Since T is a tree it cannot contain a cycle, so there must be some edge \hat{e} in the cycle that is part of T^* , but does have a vertex connect to T_k . (why?)

Let $T' = T^* \cup \{e_{k+1}\} \setminus \hat{e}$. T' is a spanning tree. It also has no larger weight than T^* . But T' has a longer sequence of edges than does T^* . This contradicts the maximality of T^* .

Thus, it must always be true that k = n - 1 and T is one of the minimal spanning trees for G.